A Riemann-roch Theorem in Tropical Geometry
نویسندگان
چکیده
Recently, Baker and Norine have proven a Riemann-Roch theorem for finite graphs. We extend their results to metric graphs and thus establish a Riemann-Roch theorem for divisors on (abstract) tropical curves. Tropical algebraic geometry is a recent branch of mathematics that establishes deep relations between algebro-geometric and purely combinatorial objects. Ideally, every construction and theorem of algebraic geometry should have a tropical (i.e. combinatorial) counterpart that is then hopefully easier to understand — e.g. the tropical counterpart of n-dimensional varieties are certain n-dimensional polyhedral complexes. In this paper we will establish a tropical counterpart of the well-known Riemann-Roch theorem for divisors on curves. Let us briefly describe the idea of our result. Following Mikhalkin, an (abstract) tropical curve is simply a connected metric graph Γ. A rational function on Γ is a continuous, piecewise linear real-valued function f with integer slopes. For such a function and any point P ∈ Γ the order ordP f of f in P is the sum of the slopes of f for all edges emanating from P. For example, the following picture shows a rational function f on a tropical curve Γ with simple zeroes at P2 and P5 (i.e. ordP2 f = ordP5 f = 1), and simple poles at P3 and P4 (i.e. ordP3 f = ordP4 f = −1).
منابع مشابه
J an 2 00 7 GRAPHS , ARITHMETIC SURFACES , AND THE RIEMANN - ROCH THEOREM
We use the theory of arithmetic surfaces to show that the Riemann-Roch theorem for Q-graphs is a direct consequence of the usual Riemann-Roch theorem for curves in algebraic geometry.
متن کاملComputing Riemann-roch Spaces in Algebraic Function Elds and Related Topics
We develop a simple and eecient algorithm to compute Riemann-Roch spaces of divisors in general algebraic function elds which does not use the Brill-Noether method of adjoints nor any series expansions. The basic idea also leads to an elementary proof of the Riemann-Roch theorem. We describe the connection to the geometry of numbers of algebraic function elds and develop a notion and algorithm ...
متن کاملThe Tropical Nullstellensatz for Congruences
Tropical algebraic geometry originally developed as the study of certain geometric objects, called amoebas, that arose as the logarithmic images of complex varieties. These amoebas possessed semi-linear skeletons in which was encoded much of the geometric content of the original complex variety. The skeletons could also be recovered as limits of logarithmic (or valuative) maps of the original c...
متن کاملComputing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics
We develop a simple and e cient algorithm to compute Riemann-Roch spaces of divisors in general algebraic function elds which does not use the Brill-Noether method of adjoints nor any series expansions. The basic idea also leads to an elementary proof of the Riemann-Roch theorem. We describe the connection to the geometry of numbers of algebraic function elds and develop a notion and algorithm ...
متن کاملAn arithmetic Riemann-Roch theorem in higher degrees
We prove an analogue in Arakelov geometry of the Grothendieck-RiemannRoch theorem.
متن کامل